Intelligent states for the Anandan - Aharonov parameter-based uncertainty relation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 L609
(http://iopscience.iop.org/0305-4470/31/36/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.102
The article was downloaded on 02/06/2010 at 07:11

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Intelligent states for the Anandan-Aharonov parameter-based uncertainty relation

N Horesh and A Mann \dagger
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 22 July 1998

Abstract

We obtain the form of the intelligent states for the recent parameter-based uncertainty relation of Anandan and Aharonov.

Intelligent states are quantum states which satisfy the equality in the uncertainty relation for non-commuting observables [1]. Recently, Anandan and Aharonov [2] proved the parameter-based uncertainty relation (PBUR):

$$
\begin{equation*}
\langle\Delta E\rangle_{t} \delta t \geqslant \frac{h}{4} \tag{1}
\end{equation*}
$$

where δt is the distance of translation to the 'nearest' orthogonal state, $\delta t=\inf \{t>$ $0 \mid\langle\psi| \hat{U}(t)|\psi\rangle=0\}, \hat{U}(t)$ is the time evolution operator, and $\langle\Delta E\rangle_{t}=1 / \delta t \int_{0}^{\delta t} \Delta E(t) \mathrm{d} t$ is the time average of the energy uncertainty $\left((\Delta E)^{2}=\langle\psi| \hat{H}^{2}|\psi\rangle-\langle\psi| \hat{H}^{2}|\psi\rangle^{2}\right)$.

A similar PBUR for position and momentum was derived by Yu [3]. In this work we discuss the intelligent states for PBUR.

The proof of (1) is based on a geometric argument: the time evolution of the state ψ (between orthogonal states, if they exist) gives a curve $\gamma(t)$ on the unit sphere $S(H)$ where H is the relevant Hilbert space. Consider the natural projection $\pi: S(H) \rightarrow P(H)$, where $P(H)$ is the projective Hilbert space. The length, measured in $P(H)$, of the curve $\pi(\gamma)(t)$, is obviously not smaller than the distance between the initial and the final states, which, by definition is measured along a geodesic in $P(H)$. The left-hand side of (1), as shown in [2], is the length of $\gamma(t)$ (divided by $\frac{\hbar}{2}$). Equality in (1) holds only for states that evolve on a geodesic in $P(H)$. We refer to such states as intelligent states, in analogy to [1].

The inequality (1) holds also if \hat{H} is replaced by any other Hermitian operator \hat{A}, and t is replaced by a parameter ($\operatorname{say} \varphi$) that describes evolution of the system by the action of the unitary operator $\hat{U}_{A}(\varphi)=\exp \left(\frac{i \varphi}{\hbar} \hat{A}\right)$. (As examples, \hat{A} may be the number operator \hat{N}, or the z-component of angular momentum \hat{j}_{z}, or the momentum operator [3].) The uncertainty relation (1) becomes

$$
\begin{equation*}
\Delta \hat{A} \delta \varphi \geqslant \frac{h}{4} \tag{2}
\end{equation*}
$$

where $\Delta \hat{A}$ and $\delta \varphi$ are defined analogously to ΔE and δt.

[^0]Assume that \hat{A} (independent of φ) has a complete basis of normalized eigenstates $\left\{\left|\psi_{\alpha}\right\rangle\right\}_{\alpha \in I}$ with non-degenerate eigenvalues $\left\{m_{\alpha}\right\}_{\alpha \in I}$, with I a set of indices. We prove now that all states of the form

$$
\begin{equation*}
|\psi\rangle=c_{1}\left|\psi_{\alpha}\right\rangle+c_{2}\left|\psi_{\beta}\right\rangle, \alpha \neq \beta ;\left|c_{1}\right|^{2}=\left|c_{2}\right|^{2}=\frac{1}{2} \tag{3}
\end{equation*}
$$

are intelligent states and there are no others.
Consider the two-dimensional subspace $\operatorname{span}\left\{\left|\psi_{\alpha}\right\rangle,\left|\psi_{\beta}\right\rangle\right\}$. To obtain the vanishing of $\langle\psi| \exp \left(\frac{\mathrm{i} \varphi}{\hbar} \hat{A}\right)|\psi\rangle$ (for $\left.|\psi\rangle=c_{1}\left|\psi_{\alpha}\right\rangle+c_{2}\left|\psi_{\beta}\right\rangle\right)$ we need to find a solution of the equation:

$$
\begin{equation*}
\left|c_{1}\right|^{2} \exp \left(\frac{\mathrm{i} \varphi}{\hbar} m_{\alpha}\right)+\left|c_{2}\right|^{2} \exp \left(\frac{\mathrm{i} \varphi}{\hbar} m_{\beta}\right)=0 \tag{4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\exp \left(\frac{\mathrm{i} \varphi}{\hbar}\left(m_{\alpha}-m_{\beta}\right)\right)=-\frac{\left|c_{1}\right|^{2}}{\left|c_{2}\right|^{2}} \Rightarrow\left|c_{1}\right|^{2}=\left|c_{2}\right|^{2}=\frac{1}{2} \tag{5}
\end{equation*}
$$

Therefore $\exp \left(\frac{\mathrm{i} \delta \varphi}{\hbar}\left(m_{\alpha}-m_{\beta}\right)\right)=-1$ and $\delta \varphi=\frac{\pi \hbar}{\left|m_{\alpha}-m_{\beta}\right|}$.
An elementary calculation shows that for all states of the form (3) $\Delta \hat{A}$ is maximal when $\left|c_{1}\right|^{2}=\left|c_{2}\right|^{2}$. However, for any other states of the form (3), while $\Delta \hat{A}$ is smaller, $\delta \varphi$ is infinite! (because there does not exist a solution of equation (4) for $\left|c_{1}\right| \neq\left|c_{2}\right|$. It is now easy to see that for the states (3) the inequality becomes an equality. Indeed,

$$
\begin{align*}
& \left.\Delta \hat{A}^{2}=\frac{1}{2} m_{\alpha}^{2}+\frac{1}{2} m_{\beta}^{2}-\left(\frac{1}{2} m_{\alpha}^{2}+m_{\beta}\right)\right)^{2}=\left(\frac{m_{\alpha}-m_{\beta}}{2}\right)^{2} \tag{6}\\
& \Delta \hat{A} \delta \varphi=\frac{\pi \hbar}{\left|m_{\alpha}-m_{\beta}\right|} \cdot \frac{\left|m_{\alpha}-m_{\beta}\right|}{2}=\frac{h}{4} . \tag{7}
\end{align*}
$$

This proves that states (3) are indeed intelligent states and in the two-dimensional subspace there are no other intelligent states.

To prove that any state not of the form (3) is not an intelligent state we use the following argument: a geodesic in $P(H)$ is an image under the projection π of some geodesic in $S(H)$ (where both $P(H)$ and $S(H)$ are treated as real manifolds). It is well known that the geodesics on the unit sphere are intersections of two-dimensional (real) subspaces V with the sphere [4]. Therefore, geodesics lie in a two-dimensional subspace V.

Let $|\psi\rangle=\sum_{\alpha \epsilon I} c_{\alpha}\left|\psi_{\alpha}\right\rangle$ be a general state, where there exist at least three α 's such that $c_{\alpha} \neq 0$, say $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Suppose $|\psi\rangle$ is an intelligent state, then $\exp \left(\frac{\mathrm{i} \varphi}{\hbar} \hat{A}\right)|\psi\rangle \in V$, $\operatorname{dim}(V)=2$. Hence, there is a state $|\Phi\rangle$, which is orthogonal to V and has a non-zero component in $\operatorname{span}\left\{\left|\psi_{\alpha_{1}}\right\rangle,\left|\psi_{\alpha_{2}}\right\rangle,\left|\psi_{\alpha_{3}}\right\rangle\right\}$

$$
\begin{equation*}
\langle\Phi| \sum_{\alpha \in I} c_{\alpha} \exp \left(\frac{\mathrm{i} \varphi}{\hbar} \hat{A}\right)\left|\psi_{\alpha}\right\rangle=0 \tag{8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\sum_{\alpha \in I} c_{\alpha}\left\langle\Phi \mid \psi_{\alpha}\right\rangle \exp \left(\frac{\mathrm{i} \varphi}{\hbar} m_{\alpha}\right)=0 \tag{9}
\end{equation*}
$$

By applying to both sides $\int_{-\infty}^{\infty}(\cdot) \exp \left(m_{\alpha_{j}} \frac{i \varphi}{\hbar}\right) \mathrm{d} \varphi$

$$
\begin{align*}
& \sum_{\alpha \in I} c_{\alpha}\left\langle\Phi \mid \psi_{\alpha}\right\rangle \int_{-\infty}^{\infty} \exp \left(\frac{\mathrm{i} \varphi}{\hbar}\left(m_{\alpha_{j}}-m_{\alpha}\right)\right) \mathrm{d} \varphi=0 \tag{10}\\
& \sum_{\alpha \in I} c_{\alpha}\left\langle\Phi \mid \psi_{\alpha}\right\rangle \delta\left(m_{\alpha_{j}}-m_{\alpha}\right)=0 \tag{11}\\
& \Rightarrow\left\langle\Phi \mid \psi_{\alpha_{j}}\right\rangle c_{\alpha_{j}}=0 \Rightarrow \ni j \epsilon\{1,2,3\} ; c_{\alpha_{j}}=0 \tag{12}
\end{align*}
$$

contradiction. The proof is completed.
To conclude, we add that if \hat{A} has degeneracies, a similar proof shows that the intelligent states are states of the form $|\psi\rangle=c_{1}\left|\psi_{\alpha}\right\rangle+c_{2}\left|\psi_{\beta}\right\rangle$, where $m_{\alpha} \neq m_{\beta}$, and $\left|c_{1}\right|^{2}=\left|c_{2}\right|^{2}=\frac{1}{2}$.

This work was supported by the Technion VPR Fund-The Harry Werksman Research Fund.

References

[1] Aragone C, Guerri G, Salamo S and Tani J L 1974 J. Phys. A: Math. Gen. 7 L149 Aragone C, Chalbaud E and Salamo S 1976 J. Math. Phys. 171963
[2] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 651697
[3] Yu T 1996 Phys. Lett. A 2239
[4] Carmo M 1992 Riemannian Geometry (Boston, MA: Birkhäuser) p 66

[^0]: \dagger E-mail address: ady@physics.technion.ac.il

