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LETTER TO THE EDITOR

Intelligent states for the Anandan–Aharonov
parameter-based uncertainty relation

N Horesh and A Mann†
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 22 July 1998

Abstract. We obtain the form of the intelligent states for the recent parameter-based uncertainty
relation of Anandan and Aharonov.

Intelligent states are quantum states which satisfy the equality in the uncertainty relation
for non-commuting observables [1]. Recently, Anandan and Aharonov [2] proved the
parameter-based uncertainty relation (PBUR):

〈1E〉t δt > h

4
(1)

where δt is the distance of translation to the ‘nearest’ orthogonal state,δt = inf{t >
0|〈ψ |Û (t)|ψ〉 = 0}, Û (t) is the time evolution operator, and〈1E〉t = 1/δt

∫ δt
0 1E(t) dt is

the time average of the energy uncertainty((1E)2 = 〈ψ |Ĥ 2|ψ〉 − 〈ψ |Ĥ 2|ψ〉2).
A similar PBUR for position and momentum was derived by Yu [3]. In this work we

discuss the intelligent states for PBUR.
The proof of (1) is based on a geometric argument: the time evolution of the stateψ

(between orthogonal states, if they exist) gives a curveγ (t) on the unit sphereS(H) where
H is the relevant Hilbert space. Consider the natural projectionπ : S(H)→ P(H), where
P(H) is the projective Hilbert space. The length, measured inP(H), of the curveπ(γ )(t),
is obviously not smaller than the distance between the initial and the final states, which, by
definition is measured along a geodesic inP(H). The left-hand side of (1), as shown in
[2], is the length ofγ (t) (divided by h̄

2). Equality in (1) holds only for states that evolve
on a geodesic inP(H). We refer to such states as intelligent states, in analogy to [1].

The inequality (1) holds also if̂H is replaced by any other Hermitian operatorÂ, andt
is replaced by a parameter (sayϕ) that describes evolution of the system by the action of the
unitary operatorÛA(ϕ) = exp( iϕ

h̄
Â). (As examples,Â may be the number operator̂N , or

thez-component of angular momentum̂jz, or the momentum operator [3].) The uncertainty
relation (1) becomes

1Âδϕ > h

4
(2)

where1Â andδϕ are defined analogously to1E andδt .
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Assume thatÂ (independent ofϕ) has a complete basis of normalized eigenstates
{|ψα〉}αεI with non-degenerate eigenvalues{mα}αεI , with I a set of indices. We prove now
that all states of the form

|ψ〉 = c1|ψα〉 + c2|ψβ〉, α 6= β; |c1|2 = |c2|2 = 1
2 (3)

are intelligent states and there are no others.
Consider the two-dimensional subspace span{|ψα〉, |ψβ〉}. To obtain the vanishing of

〈ψ | exp( iϕ
h̄
Â)|ψ〉 (for |ψ〉 = c1|ψα〉 + c2|ψβ〉) we need to find a solution of the equation:

|c1|2 exp

(
iϕ

h̄
mα

)
+ |c2|2 exp

(
iϕ

h̄
mβ

)
= 0. (4)

Hence

exp

(
iϕ

h̄
(mα −mβ)

)
= −|c1|2
|c2|2 ⇒ |c1|2 = |c2|2 = 1

2
. (5)

Therefore exp( iδϕ
h̄
(mα −mβ)) = −1 andδϕ = πh̄

|mα−mβ | .

An elementary calculation shows that for all states of the form (3)1Â is maximal when
|c1|2 = |c2|2. However, for any other states of the form (3), while1Â is smaller,δϕ is
infinite! (because there does not exist a solution of equation (4) for|c1| 6= |c2|). It is now
easy to see that for the states (3) the inequality becomes an equality. Indeed,

1Â2 = 1

2
m2
α +

1

2
m2
β −

(
1

2
m2
α +mβ)

)2

=
(
mα −mβ

2

)2

(6)

1Âδϕ = πh̄

|mα −mβ | ·
|mα −mβ |

2
= h

4
. (7)

This proves that states (3) are indeed intelligent states and in the two-dimensional subspace
there are no other intelligent states.

To prove that any state not of the form (3) is not an intelligent state we use the following
argument: a geodesic inP(H) is an image under the projectionπ of some geodesic in
S(H) (where bothP(H) andS(H) are treated as real manifolds). It is well known that the
geodesics on the unit sphere are intersections of two-dimensional (real) subspacesV with
the sphere [4]. Therefore, geodesics lie in a two-dimensional subspaceV .

Let |ψ〉 = ∑
αεI cα|ψα〉 be a general state, where there exist at least threeα’s such

that cα 6= 0, sayα1, α2, α3. Suppose|ψ〉 is an intelligent state, then exp( iϕ
h̄
Â)|ψ〉εV ,

dim(V ) = 2. Hence, there is a state|8〉, which is orthogonal toV and has a non-zero
component in span{|ψα1〉, |ψα2〉, |ψα3〉}

〈8|
∑
αεI

cα exp

(
iϕ

h̄
Â

)
|ψα〉 = 0. (8)

Hence ∑
αεI

cα〈8|ψα〉 exp

(
iϕ

h̄
mα

)
= 0. (9)

By applying to both sides
∫∞
−∞(·) exp(mαj

iϕ
h̄
) dϕ∑

αεI

cα〈8|ψα〉
∫ ∞
−∞

exp

(
iϕ

h̄
(mαj −mα)

)
dϕ = 0 (10)∑

αεI

cα〈8|ψα〉δ(mαj −mα) = 0 (11)

⇒ 〈8|ψαj 〉cαj = 0⇒3 jε{1, 2, 3}; cαj = 0 (12)
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contradiction. The proof is completed.
To conclude, we add that if̂A has degeneracies, a similar proof shows that the intelligent

states are states of the form|ψ〉 = c1|ψα〉+ c2|ψβ〉, wheremα 6= mβ , and|c1|2 = |c2|2 = 1
2.
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